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We consider the nonlinear d'Alembert equation 

OU = F ( u j  

w h e r e u = u ( x ) a n d  x = ( z o , x l ,  ..., x n j E R "  

a2 a2 a2 

ax; ax: ax: 
and F ( u )  is an arbitrary differentiable function. In equation (1) we make the local 
change of variable 

U = Q ( w )  (2) 

where W ( Z )  is a new unknown function and @ is a function to be determined later. 
On making this change, (1) becomes 

bow + &W,W. = F ( @ )  (3) 

where 

Equation (3) is equivalent to the following equation 

(ij 

where P,,(w) is an arbitrary polynomial of degree n in w ,  and X = - l , O ,  1. Choos- 
ing CP such that 

X (&+&$) = F ( @ j  
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equation (4) becomes 

b o w - A -  + 6 ( w P w ” - A ) = o .  ( 2) 
nom thii it is clear that a solution of the system 

w P w P = A  (7) pn 
p* 

o w  = A- 

is also a solution of (6), and in this way we obtain a solution of (1) provided @ 
satisfies (5). There remains, of course, the problem of the existence of solutions of 
(7). We have the following result. 

Theorem 1. For n = 3 the system 

ow = H ( w )  wPwP = A 

with A = -I9O9 1 i_S compatible if and only $ 

AN 
H ( w )  = - w + c  

where N = 0 , 1 , 2 , 3  and Cis an arbitrary constant. 

This result follows from theorem 2 of [2]. In theorem 1 of [3], it is further shown that 
if the system in theorem 1 above is compatible, then it is necessarily of the type given 
in equation (7). Moreover, as is mentioned in [3], the system (7) is always compatible 
(for any n) if H ( w )  is as in theorem 1 above. Having discussed the question of 
compatibility, we now turn to equation (5), which gives us the appropriate choice of 
@. We do this for several cases of the function F ( u ) .  Note that for the remainder 
or’ his paper, we take n = 3.  

Casel .  F ( u ) = u k w i t h k # l .  I f P , = w m w i t h m = 0 , 1 , 2 , 3 t h e n ( 5 ) b e c o m e s  

m .  A(6 + -@) = @ k .  
W 

Assuming to be of the form 

@ ( w )  = awp 

with a, p constants, we obtain 

as a solution of (8). 
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F(u) = expu. Again using P,(w) = wm, m = 0 , 1 , 2 , 3 ,  equation (5)  Case 2. 
becomes 

x (6 + E h )  = exp B 
W 

and we seek solutions 0 with the help of the ansatz 

exp(@(w)) = 0rwP 

with a, p constants. We obtain 

@(..)=log( 2X(m w2 - 1) ) m = 2 , 3 .  

Case 3. 
function such that 

F ( u )  = - * ( u ) / & ~ ( u ) .  Here we take 0 to be an arbitraly differentiable 
# 0. If we take P,,(w) = A, = constant, then (5) becomes 

and this gives us 

= w + c z  
dQ 

(c ,  + & - 2 ( @ ) ) ' f 2  

where c, ,  c2 are two constants of integration. On choosing these two constants of 
ulLr;gL"LLu" ,U vc- 'CilU, WG UVLalll 
:...-"-...:-.. 1.. k.. " ~ * -  ... ̂ -l..-:- 

w = A*(@) 

w = A 0 ( u ) .  (14) 

as a solution of (12), and the change of variable (2) is then given by 

In this case of F, we have replaced 0 by another function 0; we now look at some 
cases of 0. 

Care 3(a). F(u) = A, sin U, where A, = constant. On setting 

we obtain 

d u  + c2. I ( c ,  - 2A, cos u)1/2 
@(U) = 

For cl = 2X2, c2 = 0, A, > 0 we find 

*(U) = - 
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and for c1 = -2Xl, c2 = 0, A, < 0 one obtains 

*(U)- tanh-'tan(u/4).  d=K 
On putting X = IXII in (14), the change of variable then takes on the form 

4 a r c t a n e x p ( w / A )  for A, > 0 

4 a r c t a n t a n h ( w / a )  for A, < 0. U = {  

Care 3(b). F(u) = sinh U. Integrating the equation 

we obtain 

d u  
*(U) = J ( c 1 + 2 c o s h u ) 1 / 2  t c2. 

For c1 = 2, c2 = 0 one finds 

* ' ( U )  = 2arctantanh(u/4)  

and for c, = -2, c2 = 0 one gets 

*(U) = logtanh(u/4) .  

Then (14) gives, with X > 0 

U = 4 t a n h - ' t a n ( w / f i )  

U = 4 t a n h - ' e x p ( w / f i ) .  

Case 3(c). F ( u )  = sin u /cos3u.  In this case, the equation 

sin U *(U) - = -. 
C O S ~ U  g y U )  

yields 

Again, we choose values for the integration constants. For c1 = 1, cz = 0 we find 

* ' ( U )  = sin U 
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lbbk 1. Summary of results ohtained in ases 1-3(c) 

W 
-t,(u)/b3(u) *(U) = - X > O  6i 

U = 4arctanexp(w/Jj;;) 

U = 4 arctan t a n h ( w / m  
XI > o 

XI sin U 
A, < 0 

U = 4 tanh-I t a n ( w / a )  X > 0 
u = 4 t a n h - ’ e x p ( w / m )  X > O  

sinh U 

(1 - k)w 
& X ( l + k + m - k m )  

U * , k # l  U =  ( 
1 + k +  m -  km # 0 
m = 0,1,2,3 

o w = o  
W P W P  = X 

I U = arcsin(w/fi)  

U = arcs inexp(w/G)  

x > o 
sinu/eos3 U 

x > o 

and for cl = c2 = 0 we obtain 

* ( U )  = log sin U .  

Using (14), with X > 0 the change of variable (2) is given by the equations 

U = arcsin(w/dI) 

and 

u = arcsinexp(w/dX). 

We present our results in table 1. 
We now present some results from [l] concerning the general solutions of the 

system 

(18) 
mX Ow=- 

Theorem 2. The general solution of the system (18) for m = 3, X = 1 is given by 

wz = [z, + A , ( r ) ] [ z ”  + A’(r)]  

where the function T ( I )  is defined implicitly by the equation 

w w’=X n = 3. P W 

[z, + A , ( s ) I ~ ’ ( ~ )  = 0 
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and A,,, E, are arbitrary differentiable functions of one variable satisfying the con- 
ditions 

A,B” = 0 

Theorem 3. The general solution of the system (18) for m = 0, X = -1 is given by 

E,B’ = 0 

w = A,(T)z” + f i (7)  (19) 

where the function T = T(Z) is implicitly defined by the equation 

B,(T)z’ + fa(.) = 0 (20) 

nrrl A L2 C C --- srh:tm-r fx.nr+inne -f nna .ndohla es+irhl;nn 
....U ,̂,, y p ,  J 1 ,  ,2 “.I O.W..”., IY...,L.Y..I “L Y..l I”..””.., W L . Y L J Y . 6  

A,A” = -1 A,B’ = 0 A,B” = O  B,,B’=O. (21) 

The above theorems give us some general information about the solutions of (18) 
in particular cases. Of course, these results express the solution in terms of other 
functions, but now we know how to generate these functions: we have to choose A,,  
B,, Fl, fa appropriately so as to define both T and then w (as we do below m 
a particular case). In this way, we have a systematic way of obtaining solutions of 
(18). Our approach to the solution of the nonlinear d‘Alembert equation is based 
on a change of variable as in (2). and a decomposition of the equation (4) for the 
new variable w into ‘component’ equations (5). (6) and (7). Equation (5) involves 
the change of variable and the nonlinearity F(u), whereas (7) provides us with a 
system which can be dealt with using theorems 1-3. The d‘Alembert equation with 
nonlinearity sin ti was discussed in (41, where a change of variable together with a 
decomposition of the ensuing equation was also used. The result obtained in [4] can 
be obtained with our results, as follows. In (20), (21) put 

A ,  = P, B, = 8, 

where e,, = a,, - 7,; U,, Po, y, are constant vectors satisfying 

a a, = -p p’ = -y,y’I = 1 
a,@’ = U,”/” = P,y” = 0. 

rr , 

Equation (20) then defines r through 

f a ( . )  = -epx’ 
and on choosing fa invertible we obtain the solution of (19) 

= p,.~ + f (s ,rp)) .  
I 

When F( U) = -sin U we obtain 
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where f is an arbitray differentiable function. Equation (22) is the solution obtained 
in [4]. As can be seen, our method gives a useful way of obtaining exact solutions Of 
nonlinear equations. 

WF acknowledges support by the Swedish Natural Sciences Research Council, grant 
number R-RA 9423-307. 
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