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We consider the nonlinear d’Alembert equation

Ou = F(u) 1)
where u = u(z) and =z = (=4, z,, yeR”
a° 9 a2
U=gs 3.2 "~ 7
Oz Ox; dx?

and F(u) is an arbitrary differentiable function. In equation (1) we make the local
change of variable

u = ®(w) @)

where w(z) is a new unknown function and ¢ is a function to be determined later.
On making this change, (1) becomes

$0w + dw,w* = F(P) ?3)
where

. dd w w )

=3 (5) (I) (:s,
Equation (3) is equivalent to the following equation
. P . . P
¢ (Dw-agt + @ (w,w - A+ A @+ PG ) - F(®)=0 @)
where P_(w) is an arbitrary polynomial of degree n in w, and A = —-1,0,1. Choos-
ing @ such that

. . P
A (@ +®}%) = F(@) )
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equation (4) becomes

. A
0] (Dw—)\?—;) +¢(w'uw“_k) = 0. (6)

From this it is clear that a solution of the system

P
Ow = )\-1-6!'?- w,w* = A )

n

is also a solution of (6), and in this way we obtain a solution of (1) provided &
satisfies (5). There remains, of course, the problem of the existence of solutions of
(7). We have the following resuit.

Theorem 1. For n = 3 the system

Ow = H{w) wwh = A

where N = 0,1,2,3 and C is an arbitrary constant.
This result follows from theorem 2 of [2]. In theorem 1 of [3], it is further shown that
if the system in theorem 1 above is compatible, then it is necessarily of the type given
in equation (7). Moreover, as is mentioned in [3], the system (7) is always compatible
(for any n) if H(w) is as in theorem 1 above. Having discussed the question of
compatibility, we now turn to equation (5), which gives us the appropriate choice of
&. We do this for several cases of the function F(u). Note that for the remainder
of this paper, we take n = 3.
Case I. F(u) = u* with k # 1. If P, = w™ with m = 0,1,2,3 then (5) becomes
AD + 23) = ok, (8)
u
Assuming ® to be of the form
d(w) = aw?

with o, 3 constants, we obtain

(1-k)w =8
d = 9
) ((2A(1+k+m—km))"2) ®

as a solution of (B).
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Case 2. F(u) = expu. Again using P,(w) = w™, m = 0,1,2,3, equation (5)
becomes

s m o+
A (CI) + -J(I)) =exp P (10)
and we seek solutions & with the help of the ansatz
exp(®(w)) = aw’

with o, @ constants. We obtain
®(w) = log (-2—)‘(—1‘—;—11) m=2,3. (11)

Case 3. F(u) = — W (u)/¥3(u). Here we take W to be an arbitrary differentiable
function such that ¥ # 0. If we take P,(w) = A, = constant, then (5) becomes

_ (e

U3(d) (12)

and this gives us

VA de =w+c 13
f(c1+\b-2(¢))"2 e @

where ¢y, ¢, BT€ [WO cOnstants of integration. On choosing these two constants of

[ T hénie

mtegration o be Zers, we Ooiain

w = VA¥(P)
as a solution of (12), and the change of variable (2) is then given by
w = VAU (u). (14)

In this case of F, we have replaced by another function ¥; we now look at some
cases of 0.

Case 3(a). F(u) = A, sinu, where A; = constant. On setting

T

Ajsinu=- ‘;3\(1::)
we obtain
du
W(w) = /(CI—ZAI cos u)l/? e (13)

For ¢; = 2X,, ¢; =0, A > 0 we find

P(u) = log tan(u/4)

1
Vi
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and for ¢, = —2X,, ¢, = 0, A; < 0 one obtains

F(u) tanh ™! tan(w/4).

1
| /_Al
On putting A = |A,| in (14}, the change of variable then takes on the form

4arctanexp{w/,/X;) for A, >0
U=
4arctantanh(w/\/=X;) for A, < 0.

Case 3(b). F(u) = sinh u. Integrating the equation

sinhu = — \Il(u)
W3(u)
we obtain
du
W(u)“/(c1+2cosh w)l/? + e (16)

For ¢, = 2, ¢, = 0 one finds

¥(u) = 2arctan tanh(u/4)
and for ¢; = —2, ¢, = 0 one gets

W(u) = log tanh(u/4).
Then (14) gives, with A > 0

u =4tanh~! tan(w/ﬁ)

u = 4tanh™ ' exp(w/VA).

Case 3c). F(u) = sinu/cos3u. In this case, the equation

sinu VU (u)
cosdu ‘i’-”(u)
yields
du
Viw) = / (ort tantu)iA T an

Again, we choose values for the integration constants. For ¢, =1, ¢, = 0 we find

P(u)=sinu
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Thable 1. Summary of resuits obtained in cases 1-3(c).

F{u) Solution of (1) System (7)
2/(1-k)
uk k# 1 u= (1 — k)w
VIA1+Ek+m - km)
1+k4+m-km#0
m=0,1,2,3 } Ow = mXfw
P =log o2
m=2,3
—‘i’(u)/\i’a(u) T(u)= -\;J_.:\_ A>0 W
. u = 4arctanexp{w/VA1) M >0
A sinu
u = 4 arctan tanh(w/v-X7) A <0
\ Ow =10
. u =4tanh™ tan(w/vZX) A >0 wuwH = A
sinh

2 = 4 tanh ™} exp(w/V2X) A>0

u = arcsin{w/vVA) A0

sinu/fcos®u
/ u = arcsin exp(w /VX) A>0

and for ¢, = ¢, = 0 we obtain
¥({u) = log sin u.

Using (14), with A > 0 the change of variable (2) is given by the equations

u = arcsin{w/V\)
and
u = arcsin exp(w/\/,-\-).

We present our results in table 1.
We now present some results from [1] concerning the general solutions of the

system

Ow = %". wawt=X n=3 (18)

Theorem 2. The general solution of the system (18) for m = 3, A = 1 is given by
w? = [z, + A,(7)][=* + A*(7)]
where the function r(z) is defined implicitly by the equation

[z, + A, (T)]B*1) =0
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and A,, B, are arbitrary differentiable functions of one variable satisfying the con-
ditions
A,B*=0  B,B*=0.
Theorem 3. The general solution of the system (18) for m = 0, A = —1 is given by

w= A, (r)z + f(r) (19)

where the function T = 7(z) is implicitly defined by the equation

N -—
B (r)z’ + fo(r) =0 (20)
and A, B, f,, f, are arbitrary functions of one variable satisfying

A,A*=-1  AB*=0 AB*=0  B,B*=0. (1)

The above theorems give us some general information about the solutions of (18)
in particular cases. Of course, these results express the solution in terms of other
functions, but now we know how to generate these functions: we have to choose A,
B,, F,, f, appropriately so as to define both T and then w (as we do below in
a particular case). In this way, we have a systematic way of obtaining solutions of
(18). Our approach to the solution of the nonlinear d’Alembert equation is based
on a change of variable as in (2), and a decomposition of the equation (4) for the
new variable w into ‘component’ equations (5), (6) and (7). Equation (3) involves
the change of variable and the nonlinearity F'(u), whereas (7) provides us with a
system which can be dealt with using theorems 1-3. The d’Alembert equation with
nonlinearity sin u was discussed in [4], where a change of variable together with a
decomposition of the ensuing equation was also used. The resuit obtained in [4] can
be obtained with our results, as follows. In (20), (21) put

A, =8, B,=4

© a

where 6, = o, — 7,; o, B,, 7, are constant vectors satisfying

B o— B B
ayaf = -, % = -y, 7" =
B b= B
a,ft =a,y" = 8,4% =0.

Equation (20) then defines r through
for) = =0,2*

and on choosing f, invertible we obtain the solution of (19)
w= g z" + f(8,z").

When F'(u) = —sin u we obtain

u = 4arctanexp(8,z" + f(8,2")] (22)
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where f is an arbitrary differentiable function. Equation (22) is the solution obtained
in [4). As can be seen, our method gives a useful way of obtaining exact solutions of
nonlinear equations.
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